InnoEye.ai

InnoEye.aiInnoEye.aiInnoEye.ai

InnoEye.ai

InnoEye.aiInnoEye.aiInnoEye.ai
  • Home
  • About
  • Technologies
  • Publications
  • Contact
  • 更多
    • Home
    • About
    • Technologies
    • Publications
    • Contact
  • Home
  • About
  • Technologies
  • Publications
  • Contact

InnoEye

InnoEyeInnoEyeInnoEye

Focusing on Innovations in Digital Health through Your Eyes

InnoEye

InnoEyeInnoEyeInnoEye

Focusing on Innovations in Digital Health through Your Eyes

About InnoEye

Vision

Innovations

Solutions

  • Innovate eye health through deep learning technology for more efficient and accurate disease detection and diagnosis
  • Bridge eye and systemic health to advance the paradigm of 'Oculomics' in digital health

Solutions

Innovations

Solutions

  • Establish an AI-driven digital health platform based on multimodal ophthalmic data to form full-process intelligent systems covering "screening-diagnosis-monitoring".
  • Build agentic AI as a copilot to improve collaborations between AI and doctors.

Innovations

Innovations

Innovations

  • 3D deep learning models for detecting and predicting sight-threatening eye diseases
  • Federated learning framework for data privacy protection
  • Incorporating “Safety Net” for AI model output to flag uncertain cases

Technologies

3D Model for Detecting Glaucoma

3D Model for Detecting Diabetic Macular Edema (DME)

3D Model for Detecting Diabetic Macular Edema (DME)

  • 3D Deep-Learning Model: Develop a novel 3D deep-learning model based on residual networks (ResNet) to evaluate glaucomatous optic neuropathy comprehensively with a 3D view
  • Clinical Copilot: Develop and validate the AI-assisted system to efficiently support large-scale screening and clinical evaluation based on optical coherence tomography (OCT) scans

3D Model for Detecting Diabetic Macular Edema (DME)

3D Model for Detecting Diabetic Macular Edema (DME)

3D Model for Detecting Diabetic Macular Edema (DME)

  • Multitask Deep Learning Algorithm: Use a 3D ResNet model to analyze OCT volumetric scans, distinguishing center-involved DME (CI-DME) and non-CI-DME for better triage
  • Cross-Device Compatibility: Enables automated DME classification across multiple types of OCT devices

Automated Pre-diagnosis Image Assessment

3D Model for Detecting Diabetic Macular Edema (DME)

Automated Pre-diagnosis Image Assessment

  • Advanced Deep Learning Solution: Integrate 3D CNN, attention mechanisms, and multi-instance learning to address limitations on traditional ophthalmic imaging quality metrics
  • Image Quality Control: Incorporate pre-diagnosis image assessment to improve clinical efficiency by filtering ungradable retinal photographs and OCT scans automatically

Federated Learning

Safety Net to Flag Uncertain Cases

Automated Pre-diagnosis Image Assessment

  • Privacy-Preserving Deep Learning Models: Develop deep learning models based on federated learning frameworks to ensure data privacy and enhance multi-center collaboration without data exchanges
  • Domain Adaptation Technique: Improve model adaptability across diverse datasets and enhance model generalizability using test-time batch normalization

Safety Net to Flag Uncertain Cases

Safety Net to Flag Uncertain Cases

Safety Net to Flag Uncertain Cases

  • "Safety Net" Mechanism: Identify uncertain cases by dual probability thresholds to improve the reliability of deep learning models in ophthalmic disease diagnosis
  • AI copilot with Expert in Decision-Making: Ensure sensitive or uncertain cases receive proper medical attention

Publications

Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis

A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis

Artificial intelligence deep learning algorithm for discriminating ungradable optical coherence tomography three-dimensional volumetric optic disc scans

Deep learning-based image quality assessment for optical coherence tomography macular scans: a multicentre study

Deep-Learning–Based Pre-Diagnosis Assessment Module for Retinal Photographs: A Multicenter Study

Advancing Diabetic Macular Edema Detection from 3D Optical Coherence Tomography Scans: Integrating Privacy-Preserving AI and Generalizability Techniques — A Prospective Validation in Vietnam

Developing a privacy-preserving deep learning model for glaucoma detection: a multicentre study with federated learning

Media

AI眼檢 10分鐘揪出青光糖尿眼

 隨着人工智能興起,近期有眼鏡店、眼科檢查中心推出AI眼睛健康風險評估(下稱AI眼檢),幾分鐘內就可透過視網膜影像,快速分析到患青光眼、糖尿上眼等常見眼疾風險,甚至可了解心血管疾病潛在危機。

青光眼有分慢性與急性,分別被稱為「視力小偷」及「視力強盜」

青光眼有分慢性與急性,二者分別被稱為「視力小偷」及「視力強盜」,從病症徵狀檢視,「小偷」竟比「強盜」更恐怖?留意眼科教授的講解。 坊間有說法將青光眼與高眼壓劃上等號,但原來兩者關係並非必然!到底青光眼還有甚麼高風險因素?另會介紹研究中的篩查青光眼AI系統。 治療青光眼的手術,主要以減低眼壓為前提,手術卻非一勞永逸;年輕慢性青光眼患者受訪,道出日常生活遇到的難題。

AI新科技測青光眼 視力小偷速現形

 青光眼是本港頭號致盲眼疾,加上慢性青光眼沒任何病徵,就如小偷般慢慢竊取視力,幸而香港中文大學眼科及視覺科學學系專家研發出將人工智能應用於青光眼檢測的新技術,能盡早為患者確診及展開治療,大大減低青光眼的致盲風險。 

青光眼症狀早期難察覺視力永受損 中大創AI篩查

在香港約有12萬名青光眼患者,其中七分之一患者蒙受雙眼失明的痛苦,中大醫學院眼科及視覺科學學系助理教授陳培文表示,青光眼早期症狀較難以察覺,不少患者求醫時病情已惡化。中大醫學院眼科及視覺科學學系副教授的團隊研究出以人工智能篩查青光眼的方法。

Contact Us

Innovative Eye Focus Ltd.

RM 210, 2/F, KWONG KIN TRADE CTR, NO 5 KIN FAT ST, TUEN MUN, HONG KONG

info@innoeye.ai

Drop us a line!

取消

innoeye.ai

Copyright © 2025 innoeye.ai - All Rights Reserved. 

此網站使用 cookie。

我們會使用 cookie 分析網站流量,並為您最佳化網站的使用體驗。您接受我們使用 cookie,即表示您的資料會和其他使用者的資料進行整合。

接受